盐城EPS电源代理商
盐城EPS电源代理商
EPS电源已知了输出功率,应该用多大的磁芯?
这个问题我感觉确实很复杂。磁芯大小完全取决于两个条件,一是磁芯任何时候不能饱和,这就要求磁芯要有一定的截面积能够容下足够的匝数(也就是窗口面积);二是温升,包括磁芯的温升以及铜线温升。磁芯的温升受频率,detaB影响,而detaB同样取决于截面积和匝数,不考虑趋肤效应的话,铜线温升又取决于电流密度。归一而论,最后磁芯的截面积Ae和窗口面积Aw决定了磁芯能够做到的功率。
对于初学者,个人感觉没有必要通过计算的方法选磁芯,根据功率,查查前辈们的使用经验,该用多大磁芯也就心里有数。如果是做实验,可以大胆地把磁芯用小,而给客户做产品,就尽可能用大一点的,留足余量。
推挽变压器的匝数怎么算?
匝数的计算,最终的目的有两个:一是使峰值磁通密度Bmax小于饱和磁通密度Bsat,防止磁芯饱和,PC40材质的铁氧体100摄氏度下Bsat=0.39T;二是使磁通密度摆幅detaB控制在一定范围内,通常对于单向摆幅的正激、反激类,detaB取在0.2到0.25之间,对于双向摆幅的推挽、半桥和全桥类,detaB取在正负0.2以内。
下面介绍推挽的怎么算。首先我们要搞清楚推挽的工作频率。对于SG3525,振荡频率计算方法如下:
fosc=1/(Ct*(0.67Rt+3Rd))
千万记住,这个频率是振荡频率,SG3525输出的两路互补方波频率是振荡频率的一半。如果我们取Ct=2.2nF,Rt=10K,Rd=47欧的话,fosc=66KHz,那么输出两路方波的频率就是33KHz,占空比为0.5(死区就忽略了)。
对于正激类的变压器,磁芯是工作在断续模式的,因此可以直接用独立电压方程计算匝数:
N=Von*Ton/(Ae*detaB)
假设使用的是12V电池,那么最高电压接近14V,因此Von=14V,Ton=0.5/f=0.5/33=0.015ms=15us,选用EI33磁芯,Ae=107mm^2,detaB选正负0.16,即0.32,那么:
N=14*15/(107*0.32)=6T
所以,初级绕组我们就采用6+6的结构。
EPS电源
输入电路:
220V交流电经L801、L802两级滤波后滤除电网中的干扰信号,然后送到BD801全波整流,经C808、C809滤波后得到300V左右的直流电压,作为开关电源的工作电压。L801和L802及输入电路中的电容,同时还有防止开关电源的脉冲信号串入电网而污染电源的作用。
开关电源的振荡:
开关电源的振荡芯片采用TDA4605-2,,该电路能完成开关电源的振荡、稳压及各种保护。
220V交流电压经BD801整流、R804限流、C810滤波后,得到10V左右的电压,加到IC801的(6)脚,作为开关电源的起动电压。IC801开始振荡,从(5)脚输出振荡脉冲,经R813加到开关管Q801的栅极,开关变压器各绕组开始输出电压,完成起动过程。IC801(5)脚输出的振荡脉冲频率,与负载的轻重有关。
开关电源的稳压:
TDA4605-2的(1)脚为误差放大取样电流输入端。开关变压器的(5)脚绕组输出的电压,其中一路经D802整流、C815滤波,再经R824+R812与R810分压后送到IC801的(1)脚,同时光耦IC803内部的三极管的C、E极是并联在R824上的,因而IC803内部的三极管的导通程度影响了(1)脚输入电流的大小,而光耦内部的发光二极管是经RR825、VR801、R826、R827,在主电源输出电压120V上取样的,这样就构成了一个稳压控制回路,调节VR801,可使输出电压控制在120V上。
集成电路的低功耗设计动因
在集成电路发展的早期到上世纪八十年代,功耗问题并不是很突出。在这段时间内,由于电路系统规模普遍较小和CMOS工艺的兴起,低功耗尚未被作为IC设计的重要因素。
在1968年,Intel公司的创始人之一G. Moore就预测,每18到24个月,IC的集成度将提高一倍,这就是著名的Moore定律。而事实上,这四十多年来,IC技术就是基本上遵循着Moore定律取得了巨大的发展。集成电路经历了从小规模集成(SSI)发展到超大规模(VLSI)到现在的甚大规模集成(ULSI),即一个芯片上可以包含一亿以上的元件的水平。虽然量子效应和经济的限制将使IC集成度增长的速度趋缓,但是可以预见的是,随着新技术的采用IC的集成度持续发展的势头将不会改变。同时,系统的复杂度也在不断地提高,即将不同功能的器件和电路都集成到一个芯片上,构成一个系统集成芯片(SOC)。显然,集成电路复杂度和集成度的提高使得低功耗正成为一个不可或缺的电路设计指标。
首先,过高的功耗将使芯片容易过热,电路可靠性下降,最终导致失效。有研究表明,温度每升高10 C,器件的故障率将提高两倍;另外,不断增高的功耗将给芯片的封装和散热提出了更高的要求,这不仅会增加成本,而且在小型化应用场合中,这种方案往往不被采纳。
更重要的是,消费类电子产品的发展和大量应用推动了对功耗问题的研究。
低功耗的概念是由电子手表等工业首次提出的,而在小型化、高集成度的消费类电子产品中,为了降低电路成本、提高电路稳定性、可靠性,更需要设计低功耗电路,以保证在集成度提高时,单位面积维持同样甚至更低的功耗。同时,因为在过去的三十年中电池的容量仅仅增加了2~4倍,远没有VLSI技术的发展迅速,所以在电池供电系统中,集成电路的低功耗设计是延长电池使用寿命的最有效手段。此外,便携式设备趋于使用更少的电池,以减小尺寸和重量,也必然要求电路实现低功耗。和十年前相比,消费类电子产品在电子产业中的比例已从40%快速增长到55%,因此可以说消费类电子产品是低功耗设计的主要推动力。
销售:王浩*您的姓名:
*联系手机:
固话电话:
E-mail:
所在单位:
需求数量:
*咨询内容: