氮气减压阀】作用
由主阀和导阀两部分组成.主阀主要由阀座/主阀盘/活塞/弹簧等零件组成。导阀主要由阀座/阀瓣/膜片/弹簧/调节弹簧等零件组成。【氮气减压阀】通过调节调节弹簧压力设定出口压力,利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。上海申弘阀门有限公司主营阀门有:减压阀(组合式减压阀,可调式减压阀,自力式减压阀
上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,水减压阀,蒸汽减压阀本系列减压阀属于先导活塞式减压阀。通过调节调节弹簧压力设定出口压力,利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。气体减压阀主要用于气体管路,如空气减压阀、氮气减压阀、氧气减压阀、氢气减压阀、液化气减压阀、天然气减压阀等气体
减压阀是一种将出口压力调节到低于进口压力的控制阀。用于减低系统中某一分支液压油路的压力,以满足液压设备执行元件的需要,常见于各种液压控制系统、夹紧系统、辅助系统及润滑系统中。
减压阀按调节要求的不同,减压阀分为定值减压阀、定比减压阀和定差减压阀。定压减压阀用于控制出口压力为定值,使液压系统中某一部分得到较供油压力低的稳定压力;定比减压阀用来控制它的进、出口压力保持调定不变的比例;定差减压阀则用来控制进、出口压力差为定值。
2.2定值减压阀
定值减压阀的结构和工作原理
定压输出减压阀有直动式和先导式两种结构形式,直动式减压阀较少单独使用。在先导式减压阀中,根据先导级供油的引入方式的不同,有先导级由减压出口供油和先导级由减压进口油两种结构形式。
图2-1
工作原理如图2-1:进口压力P1经减压口减压后压力变为出口压力P2,出口压力油经主阀体上的通道6和底座8上的通道进入主阀芯9的下腔,再经过主阀芯上的阻尼孔进入主阀芯的上腔和先导阀的前腔,然后再通过锥阀座4中的阻尼孔后,作用到先导锥阀3上。当出口压力低于调定压力时,先导阀口关闭,主阀芯下端的阻尼孔中没有油液流动,主阀芯上、下两端的油压力相等,主阀芯在弹簧力的作用下处于最下端位置,减压口全开,不起减压作用,即P1≈P2。当出口压力超过调定压力时,出油口部分液体经过阀座上的通道、主阀芯阻尼孔、主阀腔、先导阀口、先导阀上的泄漏油口L流回油箱。阻尼孔有油液通过,产生压力损失,使主阀芯上下腔产生压力(P2>P1),此压力差所产生的作用力大于主阀弹簧力时,主阀上移,使节流口(减压口)关小,减压作用增强,直到主阀芯稳定到某一平衡位置,此时出口压力P2取决于先导阀弹簧所调定的压力值。
设A、Ac分别为主阀和先导阀有效作用面积( );Kx、Ky分别为先导阀和主阀弹簧刚度(N/m);X0 、X分别为先导阀弹簧预压缩量和开口量(m);Y0、Y、Ymax分别为主阀弹簧预压缩量、主阀开口量和最大开口量(m),则:
当: Ac<Ft时,先导阀关闭,主阀上下两端不产生压力差
当: Ac>Ft时,先导阀打开,主阀上下两端产生压力差,主阀芯提升,起减压作用
式子中 —是主阀芯上腔的压力值(Mpa);Ft—设定压力值(N);
忽略稳态液动力时,根据[1]先导阀和主阀的力平衡方程为:
(14-3)
所以,出口压力:
P2= (14-4)
又∵ X<< ,Y<< + ,Ky很小
∴ ≈C(常数)
∴ P2=
调节调压弹簧,改变硬弹簧力,即可改变出口压力。
特点: 在减压阀出口油液不再流动时,由于先导阀卸油仍未停止,减压口仍有油液流动,阀就处于工作状态,出口压力也就保持调定压力不变。
先导式减压阀和先导式溢流阀它们之间虽然有很多相似之处,不过也存在本质的差异:首先,减压阀保持出口压力基本不变,而溢流阀保持进口处的压力基本不变。其次,再不工作的状态下,减压阀的进、出油口互通,而溢流阀的进、出油口则不相通。最后,为了保持减压阀出口压力调定值恒定,它的导阀弹簧腔需要通过泄油口单独外接油箱;而溢流阀的出油口是通油箱的,所以它的导阀的弹簧腔和泄漏油可以通过阀体上的通道和出油口相通,不需要单独外接油箱。
如果外来干扰使进口压力P1升高,则出口压力P2也升高,主阀芯上移,节流口减小,P2又降低,主阀芯在新的位置上处于平衡,而出口压力P2基本维持不变;反之亦然。
定压输出减压阀是各种减压阀中应用最多的一种,其作用是用来减低液压系统中某一回路的油液压力,起到用一油源能够同时输出两种或者两种以上的不同油压的目的。必须说明的是减压阀的出口压力还与出口的负载有关系,若因负载的建立的压力低于调定压力,则出口压力有负载决定,此时的减压阀不起到减压作用,进出口压力相等,即减压阀保证出口压力恒定的条件是先导阀开启。此外当减压阀出口负载很大,以至于使减压阀出口油液不会流动时,此时仍有少量油液通过减压阀口经过先导阀至泄油口L流回油箱,阀处于工作状态,减压发出口压力保持在调定压力值。
2.3定比减压阀
定比减压原理:利用油液在某个地方的压力损失,使进出口压差或出口压力与某一负载压力之比为常数并保持恒定,故称定比减压阀。
工作原理:高压油P1经过减压口后从以P2流出,同时低压油作用于阀芯上腔,在稳态时,忽略阀心所受到的稳态液动力、阀芯的自重和摩擦力时可得到的阀心受力平衡式
+K( +X)= (14-9)
式子中 K—弹簧刚度
、X—弹簧预压缩量及阀口开度。
若忽略刚度很小的弹簧力,则有近似的阀芯平衡方程式:
(14-10)
由上式可知道只要选择适当的大小柱塞的直径比,即可获得所需的进、出口压力比。
2.4 定差减压阀
减压原理:利用油液在某个地方的压力损失,使进出口压差或出口压力与某一负载压力之差为常数并保持恒定,故称定差减压阀。
图2-3 定差减压阀 (a)工作原理; (b)符号
工作原理:高压油P1经节流口减压后以低压P2流出,同时低压油经阀芯中心孔将压力P2传至阀芯上腔,其进出油压在阀芯有效作用面积上的压力与弹簧力相平衡根据[1]有:
△P= (Pa) (14-15)
式中,K、X0分别为弹簧刚度(N/m)和预压缩量(m);P1、P2、X、D和d如图4-3所示。
应用: 与节流阀组合作调速阀,使通过节流阀的流量基本不受外界负载影响。
减压阀( reducing valve)是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,在进口压力不断变化的情况下,保持出口压力在设定的范围内,
(1) 调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。
(2) 压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。输出压力必须低于输入压力—定值才基本上不随输入压力变化而变化。
(3) 流量特性:它是指输入压力—定时,输出压力随输出流量g的变化而变化的持性。当流量g发生变化时,输出压力的变化越小越好。一般输出压力越低,它随输出流量的变化波动就越小。
氮气,常况下是一种的气体,且通常无毒。氮气占大气总量的78.12%(体积分数),是空气的主要成份。常温下为气体,在标准大气压下,冷却至-195.8℃时,变成没有颜色的液体,冷却至-209.86℃时,液态氮变成雪状的固体。氮气的化学性质很稳定,常温下很难跟其他物质发生反应,但在高温、高能量条件下可与某些物质发生化学变化,用来制取对人类有用的新物质。
中文名:氮气
英文名:Nitrogen
化学式:N2
相对分子质量:28.013
化学性质:不活泼
CAS登录号:7727-37-9
化学式 N2
相对分子质量 28.013
CAS登录号 7727-37-9
EINECS登录号 231-783-9
英文名称 Nitrogen
熔点 63.15K,-210℃
沸点,101.325kPa(1atm)时 77.35K,-195.8℃
临界温度 126.1K,-147.05℃
临界压力 3.4MPa,33.94bar,33.5atm,492.26psia
临界体积 90.1cm3/mol
临界密度 0.3109g/cm3
临界压缩系数 0.292
液体密度,-180℃时 0.729g/cm3
液体热膨胀系数,-180℃时 0.00753 1/℃
表面张力,-210℃时 12.2×10-3 N/m,12.2dyn/cm
气体密度,101.325 kPa(atm)和70F(21.1℃)时 1.160kg/m3,0.0724 lb/ft3
气体相对密度,101.325 kPa(1atm)和70F时(空气=1) 0.967
【氮气减压阀】主要技术参数和性能指标
公称压力(Mpa) |
1.6 |
2.5 |
4.0 |
6.4 |
10.0 |
16.0 |
壳体试验压力(Mpa)* |
2.4 |
3.75 |
6.0 |
9.6 |
15.0 |
24 |
密封试验压力(Mpa) |
1.6 |
2.5 |
4.0 |
6.4 |
10.0 |
16.0 |
最高进口压力(Mpa) |
1.6 |
2.5 |
4.0 |
6.4 |
10.0 |
16.0 |
出口压力范围(Mpa) |
0.1-1.0 |
0.1-1.6 |
0.1-2.5 |
0.5-3.5 |
0.5-3.5 |
0.5-4.5 |
压力特性偏差(Mpa)△P2P |
GB12246-1989 |
|||||
流量特性偏差(Mpa)P2G |
GB12246-1989 |
|||||
最小压差(Mpa) |
0.15 |
0.15 |
0.2 |
0.4 |
0.8 |
1.0 |
渗漏量 |
X/F(聚四氟乙稀/橡胶):O Y(硬密封):GB12245-1989 |
*:壳体试验不包括膜片、顶盖
【氮气减压阀】流量系数(Cv)
目前,减压阀计算技术国外发展很快,就CV值计算公式而言,早在20世纪70年代初ISA(国际标准协会标准)就规定了新的计算公式,国际电工委员会IEC也正在制定常用介质的计算公式。下面介绍一种在平均重度法公式基础上加以修正的新公式。
原公式推导中存在的问题
在前节的CV值计算公式推导中,我们可以看出原公式推导中存在如下问题:
(1)把调节阀模拟为简单形式来推导后,未考虑与不同阀结构实际流动之间的修正问题。
(2)在饱和状态下,阻塞流动(即流量不再随压差的增加)的差压条件为△P/P=0.5 ,同样未考虑不同阀结构对该临界点的影响问题。
(3)未考虑低雷诺数和安装条件的影响。
压力恢复系数 FL 由P1在原公式的推导中,认为调节阀节流处由P1直接下降到P2,见图2-3中虚线所示。但实际上,压力变化曲线如图2-3中实线所示,存在差压力恢复的情况。不同结构的阀,压力恢复的情况不同。阻力越小的阀,恢复越厉害,越偏离原推导公式的压力曲线,原公式计算的结果与实际误差越大。因此,引入一个表示阀压力恢复程度的系数FL来对原公式进行修正。FL称为压力恢复系数(Pressure reecvery factor)。
DN |
15 |
20 |
25 |
32 |
40 |
50 |
65 |
80 |
100 |
125 |
150 |
200 |
250 |
300 |
350 |
400 |
500 |
Cv |
1 |
2.5 |
4 |
6.5 |
9 |
16 |
25 |
36 |
64 |
100 |
140 |
250 |
400 |
570 |
780 |
1020 |
1500 |
【氮气减压阀】主要零件材料