下面以半无限大的铸件为例,运用导热微分方程式
求铸件和铸型中的温度场。
假设具有一个平面的半无限大铸件在半无限大的铸
型中冷却,如图123所示。铸件和铸型的材料是均质
12
的,其热扩散率α1 和α2 近似地为不随温度变化的定值,铸型的初始温度为t20,并设液态金
属充满铸型后立即停止流动,且各处温度均匀,即铸件的初始温度为t10,将坐标的原点设
在铸件与铸型的接触面上。在这种情况下,铸件和铸型任意一点的温度t与y和z无关,为
一维导热问题。

(2)结晶潜热 结晶潜热约占液态金属热含量的85%~90%,但是,它对不同类型合
图120 纯金属流动性
(金属型中浇注,试样断面积110mm
2)金的流动性影响是不同的。纯金属和共晶成分的合
金在固定温度下凝固,在一般的浇注条件下,结晶
潜热的作用能够发挥,是估计流动性的一个重要因
素。凝固过程中释放的潜热越多,则凝固进行得越
缓慢,流动性就越好。将具有相同过热度的纯金属
浇入冷的金属型试样中,其流动性与结晶潜热相对
应:Pb的流动性最差,Al的流动性好,Zn、Sb、
Cd、Sn依次居于中间,如图120所示。
(2)充型压头 液态金属在流动方向上所受的压力越大,充型能力就越好。在生产中,
用增加金属液静压头的方法提高充型能力,也是经常采取的工艺措施。用其他方式外加压
力,如压铸、低压铸造、真空吸铸等,也都能提高金属液的充型能力。
(3)浇注系统的结构 浇注系统越复杂,流动阻力越大,在静压头相同的情况下,充型
能力就越差。
4铸件结构方面的因素
衡量铸件结构特点的因素是铸件的折算厚度 (换算厚度,当量厚度、模数)和复杂程
度,它们决定了铸型型腔的结构特点。如果铸件的体积相同,在同样的浇注条件下,折算厚
度大的铸件。