采用某一种结构的流动性试样,改变型砂的水分、煤粉含量、浇注温度、直浇道高度等因素中
的一个因素,以判断该变动因素对充型能力的影响。各种测定合金流动性的试样都可用以测
定合金的充型能力。
流动性试样的类型很多,如螺旋形、球形、U形、楔形、竖琴形、真空试样 (即用真
空吸铸法)等。在生产和科学研究中应用最多的是螺旋形试样,如图116所示,其优点是
灵敏度高、对比形象、可供金属液流动相当长的距离 (如15m),而铸型的轮廓尺寸并不太
大。缺点是金属流线弯曲,沿途阻力损失较大,流程越长,散热越多。

液态成型 (铸造)是将熔化成液态的金属浇入铸型后一次制成需要形状和性能的零件。
属由液态→固态的凝固过程中的一些现象,如结晶、溶质的传输、晶体长大、气体溶解和
出、非金属夹杂物的形成、金属体积变化等都与液态金属结构及其物理性质有关。因此,
解液态金属的结构及其性质,是控制铸件形成过程的必要基础。
由于它与铸型的接触表面积相对较小,热量散失比较缓慢,则充型能力较高。
铸件的壁越薄,折算厚度就越小,就越不容易被充满。另一方面,铸件结构复杂、厚薄部分
过渡面多,则型腔结构复杂,流动阻力大,铸型的充填就困难。

(2)充型压头 液态金属在流动方向上所受的压力越大,充型能力就越好。在生产中,
用增加金属液静压头的方法提高充型能力,也是经常采取的工艺措施。用其他方式外加压
力,如压铸、低压铸造、真空吸铸等,也都能提高金属液的充型能力。
(3)浇注系统的结构 浇注系统越复杂,流动阻力越大,在静压头相同的情况下,充型
能力就越差。
4铸件结构方面的因素
衡量铸件结构特点的因素是铸件的折算厚度 (换算厚度,当量厚度、模数)和复杂程
度,它们决定了铸型型腔的结构特点。如果铸件的体积相同,在同样的浇注条件下,折算厚
度大的铸件。