
威海友联蓄电池代理
威海友联蓄电池代理
友联蓄电池板的一个重要特性是其可在一个相对恒定的工作电压 (VMP)
下实现峰值功率输出,这与照明水平无关 (见图 1)。LT3652 2A 电池充电器充分利用了这一特性,以通过实施输入电压调节来把太阳能电池板保持于峰值工作效率 (正待专利审议)。当可用的太阳能功率不足以满足一个 LT3652 电池充电器的功率要求时,输入电压调节电路将减小电池充电电流。这将降低太阳能电池板上的负载以把太阳能电池板电压维持在
VMP,从而最大限度地增加太阳能电池板的输出功率。这种实现峰值太阳能电池板效率的方法被称为最大功率点控制
(MPPC)。
图 1:友联蓄电池板可在一个特定的输出电压
(VMP) 下产生最大的功率,这相对地独立于照明水平。LT3652 2A 电池充电器通过把太阳能电池板输入电压调节在 VMP 以最大限度地增加太阳能电池板的输出功率。
虽然 MPPC 可在低照度期间优化太阳能电池板的效率,但当功率级别很低时电池充电器的电源转换效率将变差,从而导致从太阳能电池板至电池的总功率传输效率下降。本文将说明怎样通过运用一种简单的
PWM 充电方法 (其在功率级别很低时强制电池充电器以突发脉冲的形式释放能量) 来改善电池充电器效率。
采用电流监视器状态引脚来指示低功率条件
LT3652 上的 /CHRG 电流监视器状态引脚负责指示电池充电电流的状态,并在这里用于控制 PWM
功能。该引脚在充电器输出电流大于 C/10 (即编程最大电流的 1/10) 时被拉至低电平,并在输出电流低于 C/10 时呈高阻抗状态。
在低照度期间,输入调节环路可把充电器的输出电流减小至 C/10 以下,从而导致 /CHRG
引脚变至高阻抗。该状态引脚的“状态变更”功能用于通过触发一个输入欠压闭锁 (UVLO) 电路
(其下降门限位于一个高于输入调节电压VIN(REG) 的太阳能电池板电压) 来停用
IC。作为针对充电器停用的响应,太阳能电池板电压将在 UVLO 迟滞范围内爬升,直至达到
UVLO
上升门限为止,此时以满功率重新使能充电器。充电器随后将提供充电电流,直到输入电压调节环路再次停用充电器为止。该循环不断地重复,从而产生一个由一系列高电流突发脉冲组成的充电器输出,这可在任何照明水平下最大限度地提高充电器的效率以及整个太阳能充电器系统的效率。
高效率锂离子电池充电器
图 2 示出了一款具低功率 PWM 功能的太阳能电池板至 3 节锂离子电池充电器。该充电器使用了一个 17V 输入调节电压
(针对“12V 系统”太阳能电池板的一种常用VMP),其采用VIN_REG 引脚上的电阻分压器 R4 和 R5 来设置。把一个典型 12V 系统太阳能电池板的工作电压保持在其 17V 额定 VMP 电压可产生接近 100% 的太阳能电池板效率,如图 3 所示。低功率 PWM
功能采用 M1、R6、R7 和 R8 来实现。如图 4 所示,增设 PWM 电路可显著在电池充电电流低于 200mA 时提高效率。
图 2:17V VMP 太阳能电池板至 3 节锂离子电池 (12.6V) 2A
充电器
图 3:典型“12V 系统”(VMP = 17V) 太阳能电池板效率
图 4:图 2 所示电路的效率
销售:王浩
电话:18001283863
微信:xinzhong959563688
CSB蓄电池:www.csbdianchiwang.com

表1 采用IIR滤波器的实测数据(mΩ)
二、监测装置与充电机互动设计方案
监测装置与充电机互动方案是提高劣化程度预测准确性的创造性工作模式,其基本结构如图2-1所示。
互动方案的监测系统结构
浮充状态下的测量理论和方法有其固有的局限性,放电测试能得到更为可靠的数据,但目前的放电测试或者需要人工干预,或者在不确定的停电发生后被动进行,前者难于经常性的进行,而且风险较大,后者的不确定性也带来隐患。本文的互动方案是针对先进电源装置的系统化设计方案,能有效解决前述的多方面问题。
近年来,随着大数据、云计算等技术的快速发展,传统的数据中心也迎来了一个飞速变革的时期。作为数据中心供配电系统的重要组成部分,UPS也开始发生变化。可靠、高效、易用、易维护成为越来越多UPS厂家关注的重点。那么从UPS诞生至今,共经过了哪些变化?是什么引起了这些变化?现在市场上主流产品有哪些?文中将对这几个问题进行解答。
1 UPS分类方法
UPS的分类方法很多,按储能方式大致可分为动态UPS和静态UPS,动态UPS和静态UPS又可以细分为后备式、在线互动式、在线双转换式等;从技术上又有工频和高频之分,高频机中又细分为塔式高频机和模块化高频机。
(1)动态UPS分类
动态UPS是通过旋转部件释放动能,其典型代表是飞轮UPS.飞轮UPS在市场上的应用主要有如下几种:
①在线双变换式飞轮UPS
该结构使用飞轮代替了电池进行储能,需要搭配传统UPS,因此应用比较局限。图1给出了在线双变换式飞轮UPS的组成。
②旋转在线式飞轮UPS
图2为旋转在线式飞轮UPS的组成。该解决方案替代传统UPS。
耦合扼流圈主要功能是实现电能转换、补偿和滤波。核心部件是M/G电动-发电机,市电正常时作为电动机带动飞轮(给飞轮充电),市电异常时飞轮放电,作为发电机,完全是机械式取代电力子变换,没有电力电子变换的精确控制,电网适应性和逆变出的电能质量会变差。
故障现象:市电供电及逆变状态下均工作正常,但逆变时,关机后仍有输出。
故障分析与维修:众所周知,UPS的电源开关控制市电输入和蓄电池正极。正常情况下,无论是在市电供电还是在逆变状态时,关机后均应无电压输出。用万用表检测电源开关,发现与蓄电池正极相连的一组开关已变形,未联结好。更换后(购买不到同类型电源开关时,可将变形簧片小心弄平,用细砂布将触点磨好),故障排除。
故障现象:微机配置:奔腾133,16MB内存,3GB硬盘,显卡为S3 Virge。最近升级为MMXP166,主板更换为VXPro。升级后,启动WIN95时,经常莫明其妙地死机。重新启动,报告“执行非法指令”、“异常错误”等,在DOS、WINOOWs 3.2下也经常死机。
故障分析与维修:首先,反复安装WIN95、WINOOWs3.2、DOS均未能解决,扫描发现并清除GRAVE病毒,对BIOS SETUP中的各项选项做了多次调整,但故障仍然存在。 其次,考虑硬件故障。 先考虑新零件,因为只有CPU和主板是新换的,于是更换了两块同型号的主板,故障仍存在。
替换内存CPU发现,均正常。又换上华硕TXP4主板,不但不行,而且无法从硬盘启动了。更换了硬盘,说明主板的IDE接口是正常的。而硬盘在别的机器上工作正常。到此为止,似乎每个零件都是正常的,而组装在一起却表现不正常。仔细观察,发现主机电源是200瓦的,更换了230瓦的电源后,华硕主板启动正常。
为了确认,再更换VXPro主板,发现仍然出故障。又换其他的200瓦电源,也出故障。说明原因确实是电源和主板的问题。 小结:本例的故障原因首先在于旧200瓦电源的功率太低,MMX CPU需要更大的电流。另外VXPro主板不能很好地支持多能奔腾。 由此想到,电脑升级时要综合考虑各个部件的相互关系,全面设计升级方案。除了给电脑一颗奔腾的“芯”以外,还要防止出现小马拉大车的现象。
故障现象:一台SANTAK 500VA UPS稳压电源,市电供电正常,逆变时有输出,但输出电压偏高,升至265V。
故障分析与维修:根据UPS电源工作原理可知,只有当电源的高压保护电路和市电稳压电路出现故障时,才会出现以上故障。从电路图中可知,电源输出电压经T2取样、整流、滤波后,加至电压比较器U7的8脚、9脚,然后接参考电压端。只有当8脚电压高于9脚电压时,输出脚4才会跳变成低电平,从而控制保护电路动作。
互动方案的主要原理是:电池监测(Battery Monitoring Unit--BMU)进行日常的巡检,并且分析采集的数据及变化趋势,在一定条件下请求充电机(Rectifier Unit--RU)配合进行部分放电测试。由于RU在部分放电时设置为一个比蓄电池放电下限电压低的某一整流输出值,既能使电池提供用电设备的负荷功率,又避免了放电过程中由于电池问题带来的停机风险。
*您的姓名:
*联系手机:
固话电话:
E-mail:
所在单位:
需求数量:
*咨询内容: