沧州友联蓄电池总代理
友联蓄电池多元化合物薄膜太阳能电池
为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主
要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶
硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并
不是晶体硅太阳能电池最理想的替代 砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs属
于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,因此,是很理想的电池材料。GaAs等III-V化合物薄
膜电池的制备主要采用 MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V比率、总流量等诸多参数
的影响。 除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国费莱堡太阳能系统研究所制得的GaAs太
阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%.见表2。另外,该研究所还采用堆叠结构制
备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%
。 铜铟硒CuInSe2简称CIC。CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此
,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。 CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采
用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的
转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。1995年
美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转友联蓄电池换效率。预计到2000年CIS
电池的转换效率将达到20%,相当于多晶硅太阳能电池。 CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单
等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电
池的发展又必然受到限制。
3 聚合物多层修饰电极型太阳能电池
在太阳能电池中以聚合物代替无机材料是刚刚开始的一个太阳能电池制爸的研究方向。其原理是利用不同氧化还原型聚合物的
不同氧化还原电势,在导电材料(电极)表面进行多层复合,制成类似无机P-N结的单向导电装置。其中一个电极的内层由还原电
位较低的聚合物修饰,外层聚合物的还原电位较高,电子转移方向只能由内层向外层转移;另一个电极的修饰正好相反,并且第一
个电极上两种聚合物的还原电位均高于后者的两种聚合物的还原电位。当两个修饰电极放入含有光敏化剂的电解波中时.光敏化剂
吸光后产生的电子转移到还原电位较低的电极上,还原电位较低电极上积累的电子不能向外层聚合物转移,只能通过外电路通过还
原电位较高的电极回到电解液,因此外电路中有光电流产生。 由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从
而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电
池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。
所以,电动车一旦实现规模量产,其使用、维修甚至相比传统汽车更加方便,而由于结构简单,相对产生问题的机率也会随着技术手段的日渐成熟而进一步降低,变得越来越靠谱。
而除了可靠性之外,电动车在续航里程、售价、里程焦虑这三方面,仍然存在技术瓶颈,而这个瓶颈毫无疑问是电池。那么在电池技术短期之内无法突破蓄电瓶颈的前提下,厂家就必须通过其它成熟的技术手段,来最大限度扩充电动汽车的续航里程。
其实电池对于电动汽车来说,等同于传统汽车中的汽油,汽油是将热能转化为动能,而电动车则是将电能转化为动能,能源属性不同,但原理相同。因此,汽车厂家在未来未必需要真正制造电池,因为这本身就不是汽车厂家的强项。打个比方,你让一个主机厂现在去做中石油要干的事情,合理吗?
当然,传统汽车厂商掌握电池技术也不是什么坏事,但在资本市场,完全可以通过资本手段去实现(比如直接并购一个,这种案例在汽车界,十个手指数不过来),而未必直接参与其中,这样的时间成本要远高于资金成本的投入,战线拉得过长,则失去了最佳的切入时机。
由此我们会进一步引申出一个问题,即如果不做电池,那什么才是传统汽车厂商最应该去做的?
发电机技术
要讨论清楚这个问题,我们还是要回到电动车结构本身。我们之前说过,电能相当于汽油,那么将电能转换为动能的电机,则相当于传统燃油汽车的发动机。因此电机的性能,很大程度上决定了电动车的性能。因此,电动机的完全自主知识产权,作为汽车主机厂,是应该牢牢地掌握在自己手里的。尤其对于强调高性能的汽车品牌,尤其如此。
永磁同步电机
根据所有我所能查到的资料,在强调运动性能的豪华品牌中,目前只有宝马对自家车型上搭载的“eDrive混合式同步电动机”拥有完全自主知识产权,而这款电动机目前就被搭载到了已经量产并正式推向民用市场的BMWi3和i8上。
BMW X5 xDrive40e底盘结构
而就在最近,宝马邀请全球媒体,在德国慕尼黑试驾了其全新宝马X5插电式混合动力汽车,这款插电式混合动力车型采用的则同样是完全拥有自主知识产权的“eDrive混合式同步电动机”。这可以看做是宝马在BMWi品牌上积累的技术下放所得。
轻量化技术
除了电动机以外,另一个值得传统汽车厂商去探索的领域则是整车轻量化设计。在这方面,德系ABB三大品牌都有各自的“大招”。
奥迪和奔驰目前主要推崇铝制车身技术。尤其是奥迪,近些年推出了搭载在A8上的全铝车身技术,使整车质量大幅度下降。作为与奥迪quattro齐名的科技,全铝车身除了能够大幅度降低车身重量外,其强度在经过精密加工成型后,甚至相比钢材更高。
奥迪全铝车身
然而相比铝,碳纤维材料则拥有更多的优点。第一,碳纤维复合材料的机械性能优于金属材料,其抗拉强度是普通钢材的4~5倍,刚度是普通钢材的3~4倍;第二,碳纤维相比铝更轻,而刚性却和铝基本一致,这也是铁的事实。
因此,早在2009年,宝马集团就与德国西格里集团共同成立合资公司,生产专用于汽车工业的碳纤维材质和碳纤维织物,并在美国华盛顿州建立工厂专门用作生产。
的确,从目前的技术结构上考量,还没有一种材料能像碳纤维一样,在轻量化车身结构、稳定性与安全性方面能够与碳纤维媲美。不过碳纤维也不是无懈可击,它也有弱点,这就是价格。
目前由于碳纤维的使用范围仍然有限,因此价格相比普通汽车车身材料要高出数倍。不过宝马给出的解决方案是:
首先通过优化流程来提升效率。由于碳纤维无法像钢、铝一样回炉再利用,因此在生产过程中容易造成材料浪费。而通过经验积累以及流程优化,宝马则可以提升材料的利用率。
其次是规模化应用。随着宝马在美国的碳纤维超级工厂的进一步发展,这家投资额达2亿元的工厂,中期产能可达到9000吨/年,占全球碳纤维年需求的20%。因此,达到经济规模后的宝马碳纤维工厂,对于进一步降低碳纤维的生产成本有足够信心。
正因为如此,我们看到的第一款这正意义上走进民用市场的全碳纤维车身车型宝马i3和i8如期而至。相比其它品牌的纯电动汽车,宝马i3和i8最大的特点是采用了全电动车设计方案,即不再原有车型上开发改进而生产电动车。而要想做到这点,殷实技术积累和出色的成本控制这两方面缺一不可。
正如我在宝马莱比锡工厂所看到的,一个身材柔弱的东方女性,用双手轻松举起了宝马i3的半个车身。而这,则是汽车工业的又一次革命。
第一产业网提示:蓄电池是农用动力机械的重要组成部分,在使用中经常会出现故障,其排除方法如下:1、活性物质脱落(1)原因:充电电流过大、温度过高或放电电流大、启动时间过长
蓄电池是农用动力机械的重要组成部分,在使用中经常会出现故障,其排除方法如下:
1、活性物质脱落
(1)原因:充电电流过大、温度过高或放电电流大、启动时间过长。
(2)排除方法:若活性物质脱落不多,可清除沉淀物后继续使用;若活性物质脱落较多,必须更换极板。
2、极板硫化
(1)原因:蓄电池长期处于放电或半放电状态,使极板上生成一种粗晶粒状的硫酸铜。
(2)排除方法:若硫化不严重,可采用小电流长时间充电的办法,使活性物质复原;若硫化严重,可用碱水腐蚀法修复。
3、极板短路
(1)原因:隔板损坏或底部沉积物太多。
(2)排除方法:若沉积物太多,应倾倒出电解液,用蒸馏水反复清洗干净后再充电。若隔板损坏,应拆开蓄电池,更换隔板。
4、蓄电池自行放电
(1)原因:充电的蓄电池久放不用,逐渐失去电量,导线短路、隔板损坏、极板活性物质脱落过多、电解液溢出太多等。
(2)排除方法:自行放电严重的蓄电池,可将其全部放电,使极板上的杂质进入电解液后,将电解液全部倒出,用蒸馏水清洗干净,最后灌入新电解液进行充电即可。平时要注意保持蓄电池表面和桩头清洁,使用中需加水时必须加蒸馏水。
5.、桩烧蚀、断裂
(1)原因:使用保养不当。
(2)排除方法:当极桩烧蚀、折断后,可用栽丝法修复。先将损坏的极桩从根部切平,在其断面中心钻一个直径5毫米、深15毫米的孔,拧入一个M6×30毫米的六角螺栓。将铁皮做的喇叭管放在极桩上,倒入加热熔化的铅水,冷却后取下喇叭管即可。
6、封口胶破裂
(1)原因:冬季使用保养不当。
(2)排除方法:若裂纹较小,可用热烙铁烫合;若裂纹较大、电解液外漏严重时,应铲除并重新浇注。为使封口料与壳可靠结合,浇注处应当用棉纱蘸碱水擦洗去酸。