您好,欢迎来到商国互联!

收藏本站

商国互联

点击查看优质供应商

当前位置:商国互联首页> 供应信息 > 电工电气、照明 > 电池及配件材料 > 电池

台州凤凰蓄电池代理 

台州凤凰蓄电池代理

  • 品 牌:凤凰蓄电池
  • 价 格:面议 /
  • 供 应 地:北京北京市
  • 包装说明:1
  • 产品规格:1
  • 运输说明:1
  • 交货说明:1
  • 发布日期:2016/9/9 14:44:02
  • 联系人QQ:2019302855 点击这里给我发消息

详细说明

详细说明Explain

台州凤凰蓄电池代理

台州凤凰蓄电池代理

晚上下班,孙女士照常准备开车回家。可起动的时候发现,车怎么也打不着火,就听见启动时呲呲的声音。孙女士赶紧给4S店的救援打电话,救援人员告诉她,是蓄电池没电了。可孙女士早晨上班时已经检查过了,空调、灯光都是关闭的,没有用电的设备,怎么蓄电池就突然没电了呢?



销售:王浩

电话:18001283863

微信:xinzhong959563688
CSB蓄电池:www.csbdianchiwang.com

凤凰蓄电池相信经常开车的朋友也会偶尔遇到跟孙女士相同的问题。4S店的维修人员表示,要防止蓄电池突然没电,最好的方法是平时多留意自己的爱车发出的“求救信号”。这种信号有以下几种表现形式:一是起动机不转或转动微弱,以致起动机无法发动;二是前大灯比平时暗;三是喇叭音量小甚至不响。出现上述问题,车主就要检查一下是否是蓄电池的问题了。

为了尽量减少蓄电池的电力消耗,4S店的专家提出两点建议:首先,要避免在发动机熄火的情况下长时间开灯或听广播;其次,即使发动机正在运转,如果停车时间较长,也应该把不必要使用的电器设备(车内外灯类和音响、导航类等)的电源关掉。养成良好的用车习惯,就可以避免不必要的困境。

但万一遇到了蓄电池突然没电,也有几种办法可以“自救”。

一,推车起动是大家最熟悉也是最有效的应急起动方法,但这是一种不得已的手段,不能经常使用,因为这样做对发动机和离合器有一定的损伤,自动挡车辆尤其要避免使用此方法起动。

二,为了避免蓄电池没电时无法充电,车主应该在车内准备一条跨接电缆,这在一般的汽配店都能买到。不过,在连接跨接电缆时,千万不能搞错跨接电缆的连接顺序。要先将没电的蓄电池的正极端子与救援车电池的正极端子连接,再将救援车电池的负极端子与没电汽车发动机室内的金属部分连接(接地线)。跨接电缆连接后,可起动救援车的发动机,并稍微提高发动机的转速,约5分钟后,便可向没电的蓄电池应急充电。充电完成后,应按与连接跨接电缆相反的顺序取下跨接电缆。

最可靠的办法还是及时联系救援车,然后连接跨接电缆,通过救援车临时充电,以起动发动机。

最后,专家提醒,蓄电池的寿命一般是2至3年。过了这个期限,车主要特别注意平时蓄电池的保养了,必要时还是及时更换,以免发生危险。

隔离变压器在皿B中的作用

4.1工频变压器的作用

UPS输出的220V正弦波交流电压的峰峰值电压是620V,而一般单相UPS的输入整流电压才为310V(这还不包括一般196V电池的情况),为了不失真地输出220V正弦波交流电压,逆变器前面的直流电压必须是650~870V。由于工频机逆变器的输入电压远远低于这个值,所以必须加一个输出变压器将电压提升到额定峰值以上才可使用,如图1所示。图1为蓄电池电压为192V的情况,在中小功率中,为了节约成本,一般都不将蓄电池电压做得太高,所以输出隔离变压器一般为升压工作方式。

4.2对中性线的隔离作用

无输出变压器和有输出变压器的UPS的等效电路如图2所示,工频机采用的是全桥变换器,这种变换器输出的不是一根相线和一根申性线,而是两根相线。但一般的UPS负载要求必须有中性线,如果没有输出隔离变压器,将一根相线硬性接中性线,如图2(a)所示,就会导致UPS的工作不正常。图中给出了在电压正弦波正半波时的电流流动方向和途径,负半波也是如此。从图中可以看出,由于中性线的接入,使负载电流经过负载后不是经过整流器和逆变管,而直接流回市电的中性线输入端,在这种情况下,图中用虚线标出的一只整流器和一只逆变功率管就未起作用。按照正常的工作程序,负载电流应该流过两个桥式电路的各两只开关管,如图2(c)所示,其等效电路如图2(d)所示。由电路中可以看出,当在输出端增加了隔离变压器后,就可以在变压器的二次侧(负载输入端)连接市电的中性线,于是就构成了一个可靠的供电系统。

4.3 隔离变压器不能隔离干扰和缓冲负载

目前所有UPS的隔离变压器都是为了变压和隔离中性线的目的而接入的,并没有隔离干扰和缓冲负载突变的功能。图3给出了这种变压器的结构原理图。从图中可以看出,变压器的一次侧和二次侧之间都有绝缘层,它们就构成了一个一定容量的电容器C,电容器的容抗和频率成反比关系,频率越高,容抗就越小,也就是说干扰信号的频率越高,这个电容通路就越容易被穿过。由于一般干扰信号的频率是很高的,可以直接穿过变压器而长驱直入去干扰负载。若是较低频率的干扰到来,它就会按照变压器的变比按比例变换过去干扰负载。正因为变压器并不抗干扰,所以几乎所有UPS都在输入和输出端加有输入/输出滤波器,如图3所示。

同样,该变压器也没有缓冲负载电流突然变化的能力。根据能量守恒定律,变压器、二次侧之间的能量传递是等量的,即
U1I1=U2I2
比如当负载端短路时,一次电流电就会趋向于无穷大,为了平衡负载端的变化,变压器一次侧电流几也会趋向于无穷大。显然变压器的漏感可阻止电流的突然变化,但因变压器的漏感很小,不足以阻止这种变化,另方面,高频机的输出端照样串有小容量的电感,在这点上二者是等效的,都起不了关键作用。为了弥补这个不足,所以在所有UPS的输出端都接有电流传感器,一旦出现过载或短路现象,就用停止逆变器工作的方法来保护。
 

公司采用优质天然石墨作负极,石墨在高温下与适量的水蒸气作用,使其表面无定形化,这样Li+较容易嵌入石墨晶格中,从而提高其嵌Li的能力[12]。 碳负极的嵌Li能力对不同的材料有所不同,主要是受其结构的影响。如Sony公司使用聚糠醇的化合物,三洋公司使用天然石墨,松下公司采用中介相沥青基碳微球。一般说来,无定形碳具有较大的层间距和较小的层平面,如石墨为0.335nm,焦炭为0.34nm~0.35nm,有的硬碳高达0.38nm,Li+在其中的扩散速度较快,能使电池更快地充放电[13]。Dohn等[14]描述了石墨层间距d002与比容量的关系,表明随d002的增大,放电比容量增高。Takami[15]研究了中介相沥青基纤维在不同温度下的层间距和扩散系数,认为层间距取决于碳的石墨化程度,石墨化程度增加可降低Li+扩散的活化能,并有利于Li+的扩散。 高比容量的碳负极材料,可以极大地提高锂离子电池的比能量,但是部分裂解的碳化物有一个明显的缺陷就是电压滞后,即充电时Li+在0V(vs. Li+/Li)左右嵌入,而放电时在1V(vs. Li+/Li)脱嵌,尽管此类电池充电电压有4V,但实际上只有3V的工作电压。

Takami等[16]认为酚醛树脂、聚苯胺、微珠碳等明显有电压滞后现象。此外,这类材料的制备工序复杂,成本较高。天然鳞片石墨用作锂离子电池负极材料的不足之处在于石墨层间以较弱的分子间作用力即范德华力结合,充电时,随着溶剂化锂离子的嵌入,层与层之间会产生剥离(exfoliation)并形成新的表面,有机电解液在新形成的表面上不断还原分解形成新的SEI膜,既消耗了大量锂离子,加大了首次不可逆容量损失,同时由于溶剂化锂离子的嵌入和脱出会引起石墨颗粒的体积膨胀和收缩,致使颗粒间的通电网络部分中断,因此循环寿命很差。对鳞片石墨进行修饰,可以大大提高它的可逆容量和循环寿命[17.18]。Kuribayashi等[19]采用酚醛树脂包覆石墨,在700~1200℃惰性气氛下热分解酚醛树脂,形成以石墨为核心、酚醛树脂热解碳为包覆层的低温热解碳包覆石墨。包覆层在很大程度上改善了石墨材料的界面性质。低温热解碳包覆的石墨不仅具有低电位充、放电平台;同时借助于与电解液相容性好的低温热解碳阻止了溶剂分子与锂离子的共嵌入,防止了核心石墨材料在插锂过程中的层离,减少了首次充、放电过程中的不可逆容量损失并延长了电极的循环寿命。此外,对碳材料的改性方法还有表面氧化、机械研磨和掺杂等,可以有效提高电极的电化学性能。

2.非碳负极材料 近年来对LIB非碳类负极材料的研究也非常广泛。根据其组成通常可分为:锂过渡金属氮化物、过渡金属氧化物和纳米合金材料[20]。锂过渡金属氮化物具有很好的离子导电性、电子导电性和化学稳定性,用作锂离子电池负极材料,其放电电压通常在1.0V以上。电极的放电比容量、循环性能和充、放电曲线的平稳性因材料的种类不同而存在很大差异。

如Li3FeN2用作LIB负极时,放电容量为150mAh/g、放电电位在1.3V(vs Li/Li+)附近,充、放电曲线非常平坦,无放电滞后,但容量有明显衰减。Li3-xCoxN具有900mAh/g的高放电容量,放电电位在1.0V左右,但充、放电曲线不太平稳,有明显的电位滞后和容量衰减。目前来看,这类材料要达到实际应用,还需要进一步深入研究。SnO/SnO2用作LIB负极具有比容量高、放电电位比较低(在0.4~0.6V vs Li/Li+附近)的优点。但其首次不可逆容量损失大、容量衰减较快,放电电位曲线不太平稳。SnO/SnO2因制备方法不同电化学性能有很大不同。如低压化学气相沉积法制备的SnO2可逆容量为500mAh/g以上,而且循环寿命比较理想,100次循环以后也没有衰减。在SnO(SnO2)中引入一些非金属、金属氧化物,如B、Al、Ge、Ti、Mn、Fe等并进行热处理,可以得到无定型的复合氧化物称为非晶态锡基复合氧化物(Amorphous Tin-based Composite Oxide 简称为ATCO)。与锡的氧化物(SnO/SnO2)相比锡基复合氧化物的循环寿命有了很大的提高,但仍然很难达到产业化标准。 纳米负极材料主要是希望利用材料的纳米特性,减少充放电过程中体积膨胀和收缩对结构的影响,从而改进循环性能。实际应用表明:纳米特性的有效利用可改进这些负极材料的循环性能,然而离实际应用还有一段距离。关键原因是纳米粒子随循环的进行而逐渐发生结合,从而又失去了纳米粒子特有的性能,导致结构被破坏,可逆容量发生衰减。此外,纳米材料的高成本也成为限制其应用的一大障碍。 某些金属如Sn、Si、Al等金属嵌入锂时,将会形成含锂量很高的锂-金属合金。如Sn的理论容量为990mAh/cm3,接近石墨的理论体积比容量的10倍。合金负极材料的主要问题首次效率较低及循环稳定性问题,必须解决负极材料在反复充放电过程中的体积效应造成电极结构破坏。单纯的金属材料负极循环性能很差,安全性也不好。采用合金负极与其他柔性材料复合有望解决这些问题。 总之,非碳负极材料具有很高的体积能量密度,越来越引起引起科研工作者兴趣,但是也存在着循环稳定性差,不可逆容量较大,以及材料制备成本较高等缺点,至今未能实现产业化。负极材料的发展趋势是以提高容量和循环稳定性为目标,通过各种方法将碳材料与各种高容量非碳负极材料复合以研究开发新型可适用的高容量、非碳复合负极材料。

3.产业化现状 在锂离子电池负极材料中,石墨类碳负极材料以其来源广泛,价格便宜,一直是负极材料的主要类型。除石墨化中间相碳微球(MCMB)、低端人造石墨占据小部分市场份额外,改性天然石墨正在取得越来越多的市场占有率。我国拥有丰富的天然石墨矿产资源,在以天然石墨为原料的锂离子负极材料的产业化方面,深圳贝特瑞电池材料有限公司以高新科技促进传统产业的发展,运用独特的整形分级、机械改性和热化学提纯技术,将普通鳞片石墨加工成球形石墨,将纯度提高到99.95%以上,最高可以达到99.9995%。并通过机械融合、化学改性等先进的表面改性技术研制、生产出具有国际领先水平的高端负极材料产品,其首次放电容量达360mAh/g以上,首次效率大于95%,压实比达1.7g/cm3,循环寿命500次容量保持在88%以上。

电池管理系统受到考验

多位业内人士向法治周末记者指出,其实不仅仅是比亚迪秦的动力电池存在问题,该现象在整个电动汽车行业中都非常普遍。

何仑对法治周末记者解释,现阶段制约电动汽车续航能力的因素是电池的能量密度,因此需要有能量密度越大,但是重量越小的电池技术。但是现阶段如果要加强汽车动力,就需要增加电池数量,这样就会增加重量。

“能量密度问题在行业内是属于你追我赶的情况,都在提高单位重量的能量密度,能量密度决定续航里程。”何仑对法治周末记者说。

另外,业内人士对法治周末记者解释,按照常规的锂电池生产,多数企业,为了确保他们的续航里程,比如标称这个电池容量是10AH。但是,他们一般会多装0.5-1AH,这样,即便是容量衰减了,还是可以满足使用需求。

“比亚迪作为一家动力电池出身的企业,他们的电池单体品质肯定是没问题的,这是他们的核心竞争力。”业内人士对法治周末记者指出。

但是汽车评论员钟师向法治周末记者指出,出现车主在对电池进行充电时达不到厂家所说标准的情况,是因为本身电池有一个衰减过程。电动汽车使用的电池出现衰减是不可避免的,这是电池的天然属性。

“最初冲完一次电汽车能跑多少距离,会随着时间的推移,出现表面上看着充满了,但电能慢慢就冲不进去,出现老化的现象,最终实际上续航能力就也存在衰减性。”钟师对法治周末记者解释。

凤凰蓄电池产品出口至日本、韩国、美国、加拿大、丹麦、印度等国家,并在国内40余家锂电厂家应用。该公司年产1800吨天然复合石墨(MSG、AMG、 616、717、818等)、1200吨人造石墨负极材料(SAG系列、NAG系列、316系列、317系列)、3000吨球形石墨(SG)、5000吨天然微粉石墨和600吨锰酸锂正极材料,并正在不断扩大生产规模,同时可以根据客户的需求、工艺、设备以及存在的问题为客户开发客户需要的产品。生产的产品品质稳定、均一,具有很好的电化学性能和卓越加工性能,可调产品的比表面积、振实密度、压实密度、不纯物含量和粒度分布等。主要生产设备和检测仪器均从国外进口,从而形成该公司独特的核心竞争力的一部分。在锂离子电池负极材料行业贝特瑞已经引领了该行业的发展方向。在锂离子电池负极材料领域,该公司的锂离子电池负极材料的已站在新一代国产化材料应用的前沿,代表着石墨深加工的方向。为确保产品持续领先,不断进行技术创新、产品创新、制度创新、思维理念创新,持续进行新产品开发,新近又推出了超高容量的合金负极材料(可逆容量>450mAh/g)、复合石墨PW系列、BF系列、纳米导电材料、锂离子动力电池用多元复合负极材料等产品。据来自全球电池强国——日本的权威信息表明:深圳市贝特瑞电子材料有限公司研发生产的锂电池负极材料目前处于国内第一,世界第四的地位。

 



 


 

卖家名片Cards

卖家名片

北京龙浩装饰工程设计有限责任公司

联系人:刘钱(销售)

手机:17746509954

邮箱:2019302855@qq.com

地址:北京北京市回龙观120号

电话: 传真:

旺铺

在线询盘/留言Online Inquiry

  • *您的姓名:

  • *联系手机:

  • 固话电话:

  • E-mail:

  • 所在单位:

  • 需求数量:

  • *咨询内容:

免责声明:交易有风险,请谨慎交易,以免因此造成自身的损失,本站所展示的信息均由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。本站对此不承担任何保证责任。
商国互联供应商 品质首选

北京龙浩装饰工程设计有限责任公司

  • 联系人:刘钱(销售)
  • 手机:17746509954
  • 电话:
  • 会员级别:免费会员
  • 认证类型:企业认证
  • 企业证件:已通过企业认证 [已认证]
  • 认证公司:
  • 主营产品:UPS电源 蓄电池 精密空调 直流屏电源 德国阳光蓄电池 松下蓄电池 汤浅蓄电池 大力神蓄电池 山特UPS电源 艾默生UPS电源 APCUPS电源 冠军蓄电池
  • 公司所在地:北京北京市