人们认为,碲化镉薄膜太阳能电池是太阳能电池中最容易制造的,因而它向商品化进展最快。 提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS 的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的碲化镉薄膜太阳能电池就采用了较薄的CdS 窗口层。要降低成本,就必须将CdTe 的沉积温度降到550 ℃以下,以适于使用廉价的玻璃作衬底;实验室成果想要走向产业,必须经过组件以及生产模式的设计、研究和优化过程。近年来,已经有许多国家的研究小组已经能够制造出转换效率12%以上的碲化镉薄膜太阳能电池。
在广泛深入的应用研究基础上,国际上许多国家的CdTe电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的碲化镉薄膜太阳能电池产量只有0.2MW,而在2010年,美国光伏的年CoTe生产量达到了2.2GW,商业模块平均效率为11.7%,而生产成本却低至0.75美元/瓦,并且宣布在今后的几年内会更低。
碲化镉(cadmium telluride)
由碲和镉构成的Ⅱ-Ⅵ族化合物半导体材料。其晶体结构为闪锌矿型,具有直接跃迁型能带结构。
碲化镉的物理性质
碲化镉的主要结构缺陷是填隙镉原子,它提供n型电导,而镉空位提供p型电导。
多晶合成用纯度为99.9999%的碲和镉按元素质量比1:1称量,并将料装入涂碳石英管内,在真空度小于4×10-4Pa下进行物料脱氧,再在真空度小于2×10-4Pa下密封石英管。然后将密封好的石英管放入合成炉内进行多晶合成。为防止合成时镉的迅速蒸发引起炸管,升温必须缓慢进行,因为在碲化镉的熔点,镉的蒸气压为1MPa。当温度升至800℃时恒温4h,然后缓慢升温到1100℃,整个合成时间为14h。
单晶生长 合成好的多晶料可用垂直布里支曼法,碲熔剂法、气相升华法、高压融体生长法等生长单晶。生长速度分别为2mm/h、3mm/h、0.2mm/h、5mm/h。垂直布里支曼法是现在常用于生长碲化镉单晶的方法,其生长示意图如图所示。
生长碲化镉单晶较困难,其原因是元素镉和元素碲在碲化镉生长温度都有较高蒸气压,因此晶体易偏离化学配比;另-个原因是镉易沾附石英安瓿。
碲化镉的应用前景分析
目前,大规模使用CdTe光伏技术的另一大障碍和镉的毒性有关。根据美国布鲁克文国家实验室的科学家们对晶体硅太阳能电池、碲化镉太阳能电池与煤、石油、天然气等常规能源和核能的单位发电量的重金属排放量的研究结果,发现石油的镉排放量是高的,达到44.3克/百万千瓦小时,煤次之,为3.7克/百万千瓦小时,而太阳能电池的排放量均小于1克/百万千瓦小时,其中又以碲化镉的镉排放量低,为0.3克/百万千瓦小时,与天然气相同。硅太阳能电池的镉排放量大约是碲化镉太阳能电池的两倍。First Solar提出了一种产品回收机制,即当First Solar每卖出一套产品,就提取一定比例的收入作为回收基金,由独立的第三方机构所管理,当产品达到使用寿命年限之后,由独立运作基金成立的回收公司会将产品回收。因为是独立运作,且不会因为First Solar营运状况的好坏而受到影响,可保证产品全部回收,不会在产品超过使用寿命年限后被任意丢弃。同时,废品经精炼后将稀有材料再利用,可部分解决一些稀有材料如碲元素的料源问题。此机制已经被德国、美国等主要太阳光电应用国家所接纳,因此First Solar产品可以顺利在这些国家进行销售。这也为碲化镉生产企业如何消除外界的环保疑虑提供了一个值得借鉴的成功案例。