杭州精锐教育是精锐国际教育集团旗下分公司成立于2006年,是教育连锁机构之一,杭州精锐教育目前有十一个分校区,分布在文二西路,庆春路,金城路,教工路,玉古路,凤起路,延安路,解放路,星光大道等交通便利繁华的街区上,杭州精锐教育目前有在职老师500多名!校区总面具占地面积近万平方米,约八百间1对1VIP书房。专为杭州中小学生提供课外辅导,学习提升,学习力测评等服务,现已成为杭州领先的专业一对一教育辅导机构。
杭州口碑比较好的辅导机构咨询电话(即日起拨打400免费热线电话有免费试听课,400询电话使用方法:先拨前10位总机号,听到提示音后再拨后几位分机号即可咨询详情或预约对孩子学业进行免费测评):
【400免费咨询电话使用方法】:先拨前10位主机号,听到提示音后再拨后面分机号。
杭州精锐教育一对一免费咨询电话
杭州精锐教育教工路学习中心--------400 810 7980转1961
杭州精锐教育黄龙学习中心----------400 810 7980转1962
杭州精锐教育文二西路学习中心------400 810 7980转1963
杭州精锐教育延安路学习中心--------400 810 7980转1964
杭州精锐教育庆春路学习中心--------400 810 7980转1965
杭州精锐教育解放路学习中心--------400 810 7980转1966
杭州精锐教育凤起路学习中心--------400 810 7980转1967
杭州精锐教育湖墅路学习中心--------400 810 7980转1968
杭州精锐教育星光大道学习中心------400 810 7980转1969
杭州精锐教育金城路学习中心(萧山)400 810 7980转1970
杭州精锐教育新世纪学习中心(萧山)400 810 7980转1971
【招生范围】只招收小学、初中、高中各年级
【热门课程】小初高各年级各学科同步辅导、数学,英语,物理,化学,作文,语文,历史,地理,生物。小升初、衔接班、奥数班 、冲刺、艺考辅导。
【上课时间】周六日、寒暑假、平时晚上等时间灵活协商安排!
以上的是学校的免费咨询电话,课程费用因年级不同、科目不同收费不同,家长如需给孩子提高学习成绩可直接拨打上面400免费电话咨询。
温馨提示:400免费咨询电话使用方法--先拨打前十位,听到语音提示“请输入分机号码”后按“转分机”后的几位分机号即可。您可以咨询最近校区、价格、师资等情况!
浏览十个广告,不如一个400免费咨询电话了解快!
********************************************
杭州精锐小学三年级学奥数去哪好/暑假四年级奥数补课联系
三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习,最终在竞赛、以及小升初中有所斩获。
学习重点难点解析:
三年级属于奥数学习打基础阶段,孩子进入三年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力相比于一、二年级有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以能否把握住三年级这一黄金时段,关系到以后小升初的成与败。
下面就简要介绍一下三年级下学期学习的关键知识点。
1.运用运算定律及性质速算与巧算
计算是数学学习的基本知识,也是学好奥数的基础。能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。在三年级,主要学习了加法与乘法运算定律,其中应用乘法分配率是竞赛中考察巧算的一大重点;除此之外,竞赛中还时常考察带符号“搬家”与添括号/去括号这两种通过改变运算顺序进而简便运算的思路。例如:17×5+17×7+13×5+13×7
问题解析:由于四个加项没有公共的乘数,不能直接应用乘法分配率。可以考虑先分组应用乘法分配率,在观察的思路,原式=(17×5+17×7)+(13×5+13×7)=17×(5+7)+13×(5+7)=17×12+13×12=(17+13)×12=30×12
2、学习假设思想解决鸡兔同笼问题
鸡兔同笼问题源于我国1500年前左右的伟大数学著作《孙子算经》,其中记载的31题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”翻译成现代文就是说有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
问题解析:我们知道每只鸡2只脚,每只兔子4只脚,我们不妨假设笼子里面只有鸡,那么应该有只脚,而事实上有94只脚,原因就是我们把一部分兔子假设成了鸡。
我们知道,每只兔子比鸡多2只脚,那么一共应该有只兔子,剩下了35–12=23只鸡。
对于一般的鸡兔同笼问题,我们有鸡数=(兔的脚数总头数–总脚数)(兔的脚数-鸡的脚数)
兔数=(总脚数-鸡的脚数总头数)(兔的脚数-鸡的脚数)
3.平均数应用题
“平均数”这个数学概念在同学们的日常学习和生活中经常用到。例如,三年级上学期期末考完试,可以计算全班同学的数学“平均成绩”,同学与爸爸妈妈三个人的“平均年龄”等等,都是我们经常碰到的求平均数的问题。
根据我们所举的例子,可以总结出求平均数的一般公式:总数和÷人数(或个数)=平均数。比如说人大附小三年级(一)班第2小组5名同学上学期期末数学成绩分别是93,95,98,97,90,那么第2小组5名同学的数学平均分是多少呢?
问题解析:根据我们总结的公式,首先可以求出第2小组5名同学数学的总分一共是93+95+98+97+92=475,所以他们的平均分是475÷5=95(分)。
4.和差倍应用题
和差倍问题是由和差问题、和倍问题、差倍问题三类问题组成的。
和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量和÷对应的倍数和=“1”倍量;
差倍问题就是已知大小两个数的差和它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量差÷对应的倍数差=“1”倍量;
和差问题是已知大小两个数的和与两个数的差,求大小两个数的应用题一般可应用公式:大数=(数量和+数量差)÷2,小数=(数量和-数量差)÷2。
为了帮助我们理解题意,弄清题目中两种量彼此间的关系,常采用画线段图的方法以线段的相对长度来表示两种量间的关系,以便于找到解题的途径。
5.年龄问题
基本的年龄问题可以说是和差倍问题生活化的典型应用。同时,年龄问题也有其鲜明的特点:任何两个人之间的年龄差保持不变。解决年龄问题,关键就是要抓住以上两点。例如:哥哥两年后的年龄是弟弟年龄的2倍,今年哥哥比弟弟大5岁,那么今年弟弟多少岁?
问题解析:由于两人之间的年龄差不变,在2年之后哥哥仍然比弟弟大5岁,那时哥哥是弟弟年龄的2倍,这就变成了一道差倍问题,也就是说弟弟的年龄在2年后是5÷(2-1)=5(岁),所以今年弟弟5-2=3(岁)。
杭州精锐小学三年级学奥数去哪好/暑假四年级奥数补课联系