西安学大长安区初三补习联系/学大好的初中培训班咨询
“人之蓄蕴,由学而大”,“学大教育”秉承爱的教育理念,致力于传播先进教学思想,研究先进教学方法,开发先进教学产品,提供先进教学服务,帮助更多试和家庭获得更好的教育和发展机会。作为个性化辅导教育的首倡者,学大致力于帮助试提高他们的学习成绩,激发他们的潜能。通过发现试的优势,弥补不足,激发学习兴趣,培养好的学习习惯,树立自信心。
温馨提示:家长您好!如需咨询中小学一对一辅导课程,请直拨400试国免费电话,听到语音提示后请直拨4位数分机号,与咨询老师直接通话。感谢您的来电,祝孩子学习进步!
西安学大教育一对一免费咨询电话
西安学大教育高新学习中心 400 8108 720转1728
西安学大教育紫薇学习中心 400 8108 720转1729
西安学大教育交大学习中心 400 8108 720转1730
西安学大教育钟楼学习中心 400 8108 720转1731
西安学大教育小寨学习中心 400 8108 720转1732
西安学大教育电子城学习中心 400 8108 720转1733
西安学大教育翠华路学习中心 400 8108 720转1734
西安学大教育经开学习中心 400 8108 720转1735
西安学大教育轻工学习中心 400 8108 720转1736
西安学大教育文景路学习中心 400 8108 720转1737
西安学大教育黄雁村学习中心 400 8108 720转1738
西安学大教育西稍门学习中心 400 8108 720转1739
西安学大教育昆明路学习中心 400 8108 720转1740
西安学大教育长安学习中心 400 8108 720转1741
西安学大教育李家村学习中心 400 8108 720转1742
西安学大教育阎良学习中心 400 8108 720转1743
西安学大长安区初三补习联系/学大好的初中培训班咨询
几何变换包括:(1)平移;(2)旋转;(3)对称。
客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较试地考察试的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查试的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止试猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完试平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
西安学大长安区初三补习联系/学大好的初中培训班咨询
*您的姓名:
*联系手机:
固话电话:
E-mail:
所在单位:
需求数量:
*咨询内容: