高压电缆的注意事项;
由于铜导体的出色导电性能,越来越多的工程采用铜芯电力电缆作为供电系统的主干道,而铝芯电力电缆的应用则较少,尤其是在越高压的电力系统中,选择铜芯电缆的就越多。高压电缆主要用于交流额定电压35KV及以下供输配电能固定廒设线路用,电缆导体的极限长期工作温度90度,短路时(最长时间不超过5S),电缆导体极限温度不超过250度。

电缆施工中应该注意的几个问题
北京供电工程公司电缆施工处负责北京地区110千伏及以上高压电力电缆的施工任务。从1994年以来,随着北京电网的迅猛发展,每年有大批电缆(主要是高压交联聚乙烯绝缘电力电缆)投入运行,电缆施工处也在电缆施工方面积累了大量的经验,取得了一些成果。下面就我们的一些施工经验对大家做一介绍。
一. 电缆技术要求:基本按照定货技术条件(按照标准IEC840-1998、GB11017-89等制定),根据我们施工中遇到的问题我们特别要求以下几项:
主绝缘偏心度<8%(IEC840-1998新规定)
外护套用阻燃红色PVC,护套应牢固包覆在金属上,电缆在施工和运行时不松动,不滑脱。
外护套应涂石墨导电层,涂层应光滑牢固,在敷设和长期运行情况下不脱落。
牵引头与铅护套(铝护套用铝焊剂)应焊接牢固,保证密封,不进水。牵引头的热缩套对牵引头和电缆的重叠长度分别不少于200mm。
阻燃试验根据IEC-332-C类的规定,并按IEC754-1或IEC745-2检测,卤素含量<330mg/g(参考值),按ASTME662-83提供烟密度,烟密度其透光率>20%(参考值),并提供试验报告。
对于使用铅金属护套、内衬层为半导电阻水带的电缆应避免发生因阻水带碳化温度(>230度)低于压铅温度(290度)而导致的阻水带碳化粘附于电缆绝缘屏蔽上的情况。半导电阻水带容易吸潮,电缆生产厂家在绕包半导电阻水带要注意暴露时间尽量短,以防出现在厂家内吸潮进水情况。现场电缆断缆后检查时一定要注意检查半导电阻水带是否干燥,我们曾经发现有一厂家电缆半导电阻水带上好象有胶状物,最后确认为在厂家内严重进水

高压电力电缆绝缘线芯热膨胀计算
引言电缆在运行过程中导体温度的升高,会引起绝缘线芯膨胀:一方面体积膨胀产生径向上的扩张,另一方面线芯的线性膨胀产生轴向上的伸长。电缆膨胀产生巨大的机械应力,对电缆自身和附件危害性很大,尤其是对110 kV以上电压等级的电缆。因此,电缆的热膨胀研究非常重要,目前对电缆轴向上的膨胀研究较多,且有成熟的计算公式[1],但对电缆径向的膨胀却鲜有报道。本文将推导电缆线芯膨胀的计算公式,并用试验来论证计算公式的有效性。1高压电缆的结构特点110 kV及以上电压等级电缆,国内普遍采用的结构如图1所示。为了减小电缆的弯曲半径,金属护套多设计成螺旋压纹或环形压纹结构(如图1中6所示),但皱纹铝护套结构也带来了负面影响:受热膨胀后的绝缘线芯与铝护套压纹内侧产生一个较大的挤压力,容易损伤绝缘。通常的解决方法是在绝缘线芯外重叠绕包两层半导电缓冲(阻水)带,如图1中5所示,吸收电缆由于受热产生的膨胀。因此在高压电缆设计过程中必须考虑电缆在长期周期性负荷下的图1高压电缆结构示意图1—导体2—导体屏蔽3—绝缘4—绝缘屏蔽5—半导电缓冲(阻水)带6—皱纹铝护套7—防蚀层8—外护套9—外电极膨胀量,预留出合理的间隙。
